Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Cryoelectron tomography (cryo-ET) and subtomogram averaging (STA) allow direct visualization and structural studies of biological macromolecules in their native cellular environment, in situ. Often, low signal-to-noise ratios in tomograms, low particle abundance within the cell, and low throughput in typical cryo-ET workflows severely limit the obtainable structural information. To help mitigate these limitations, here we apply a compressed sensing approach using 3D second-order total variation (CS-TV2) to tomographic reconstruction. We show that CS-TV2 increases the signal-to-noise ratio in tomograms, enhancing direct visualization of macromolecules, while preserving high-resolution information up to the secondary structure level. We show that, particularly with small datasets, CS-TV2 allows improvement of the resolution of STA maps. We further demonstrate that the CS-TV2 algorithm is applicable to cellular specimens, leading to increased visibility of molecular detail within tomograms. This work highlights the potential of compressed sensing-based reconstruction algorithms for cryo-ET and in situ structural biology.

Original publication

DOI

10.1016/j.str.2021.12.010

Type

Journal article

Journal

Structure

Publication Date

03/03/2022

Volume

30

Pages

408 - 417.e4

Keywords

compressed sensing, cryo-EM, cryo-ET, cryo-electron microscopy, electron cryomicroscopy, image processing, in situ structural biology, subtomogram averaging