Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Streptococcus pneumoniae is a major human pathogen that can cause severe invasive diseases such as pneumonia, septicaemia and meningitis. Young children are at a particularly high risk, with an estimated 3-4 million cases of severe disease and between 300 000 and 500 000 deaths attributable to pneumococcal disease each year. The haemolytic toxin pneumolysin (Ply) is a primary virulence factor for this bacterium, yet despite its key role in pathogenesis, immune evasion and transmission, the regulation of Ply production is not well defined. Using a genome-wide association approach, we identified a large number of potential affectors of Ply activity, including a gene acquired horizontally on the antibiotic resistance-conferring Integrative and Conjugative Element (ICE) ICESp23FST81. This gene encodes a novel modular protein, ZomB, which has an N-terminal UvrD-like helicase domain followed by two Cas4-like domains with potent ATP-dependent nuclease activity. We found the regulatory effect of ZomB to be specific for the ply operon, potentially mediated by its high affinity for the BOX repeats encoded therein. Using a murine model of pneumococcal colonization, we further demonstrate that a ZomB mutant strain colonizes both the upper respiratory tract and lungs at higher levels when compared to the wild-type strain. While the antibiotic resistance-conferring aspects of ICESp23FST81 are often credited with contributing to the success of the S. pneumoniae lineages that acquire it, its ability to control the expression of a major virulence factor implicated in bacterial transmission is also likely to have played an important role.

Original publication




Journal article


Microb Genom

Publication Date





ICE elements, Streptococcus pneumoniae, ZomB protein, pneumolysin regulation, Animals, Bacterial Proteins, Genome-Wide Association Study, Interspersed Repetitive Sequences, Mice, Streptococcus pneumoniae, Streptolysins, Virulence Factors