Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chronic tendinopathy represents a growing healthcare burden in the ageing global population. Curative therapies remain elusive as the mechanisms that underlie chronic inflammation in tendon disease remain unclear. Identifying and isolating key pathogenic and reparative cells is essential in developing precision therapies and implantable materials for improved tendon healing. Multiple discrete human tendon cell populations have been previously described ex vivo. To determine if these populations persist in vitro, healthy human hamstring tenocytes were cultured for 8 d on either tissue culture plastic or aligned electrospun fibres of absorbable polydioxanone. Novel single-cell surface proteomics combined with unbiased single-cell transcriptomics (CITE-Seq) was used to identify discrete tenocyte populations. 6 cell populations were found, 4 of which shared key gene expression determinants with ex vivo human cell clusters: PTX3_PAPPA, POSTN_SCX, DCN_LUM and ITGA7_NES. Surface proteomics found that PTX3_PAPPA cells were CD10+CD26+CD54+. ITGA7_NES cells were CD146+ and POSTN_SCX cells were CD90+CD95+CD10+. Culture on the aligned electrospun fibres favoured 3 cell subtypes (DCN_LUM, POSTN_SCX and PTX3_ PAPPA), promoting high expression of tendon-matrix-associated genes and upregulating gene sets enriched for TNF-a and IL-6/STAT3 signalling. Discrete human tendon cell subpopulations persisted in in vitro culture and could be recognised by specific gene and surface-protein signatures. Aligned polydioxanone fibres promoted the survival of 3 clusters, including pro-inflammatory PTX3-expressing CD10+CD26+CD54+ cells found in chronic tendon disease. These results improved the understanding of preferred culture conditions for different tenocyte subpopulations and informed the development of in vitro models of tendon disease.

Original publication

DOI

10.22203/eCM.v044a01

Type

Journal article

Journal

Eur Cell Mater

Publication Date

02/08/2022

Volume

44

Pages

1 - 20

Keywords

Cells, Cultured, Dipeptidyl Peptidase 4, Humans, Polydioxanone, Tendons, Tenocytes, Wound Healing