Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is high demand for novel therapeutic options for patients with acute myelogenous leukemia (AML). One possible approach is the bispecific T-cell-engaging (BiTE, a registered trademark of Amgen) antibody AMG 330 with dual specificity for CD3 and the sialic acid-binding lectin CD33 (SIGLEC-3), which is frequently expressed on the surface of AML blasts and leukemic stem cells. AMG 330 binds with low nanomolar affinity to CD33 and CD3ε of both human and cynomolgus monkey origin. Eleven human AML cell lines expressing between 14,400 and 56,700 CD33 molecules per cell were all potently lysed with EC(50) values ranging between 0.4 pmol/L and 3 pmol/L (18-149 pg/mL) by previously resting, AMG 330-redirected T cells. Complete lysis was achieved after 40 hours of incubation. In the presence of AML cells, AMG 330 specifically induced expression of CD69 and CD25 as well as release of IFN-γ, TNF, interleukin (IL)-2, IL-10, and IL-6. Ex vivo, AMG 330 mediated autologous depletion of CD33-positive cells from cynomolgous monkey bone marrow aspirates. Soluble CD33 at concentrations found in bone marrow of patients with AML did not significantly affect activities of AMG 330. Neoexpression of CD33 on newly activated T cells was negligible as it was limited to 6% of T cells in only three out of ten human donors tested. Daily intravenous administration with as low as 0.002 mg/kg AMG 330 significantly prolonged survival of immunodeficient mice adoptively transferred with human MOLM-13 AML cells and human T cells. AMG 330 warrants further development as a potential therapy for AML.

Original publication

DOI

10.1158/1535-7163.MCT-13-0956

Type

Journal article

Journal

Mol Cancer Ther

Publication Date

06/2014

Volume

13

Pages

1549 - 1557

Keywords

Animals, Antibodies, Bispecific, Antibodies, Monoclonal, CD3 Complex, Humans, Leukemia, Myeloid, Acute, Macaca fascicularis, Mice, Molecular Targeted Therapy, Sialic Acid Binding Ig-like Lectin 3, T-Lymphocytes, Xenograft Model Antitumor Assays