Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses. A library of 18 000 small molecules was screened for PDE12 inhibitor activity using a fluorescent probe specific for PDE12. The lead compounds (CO-17 or CO-63) were tested in cell-based antiviral assays using encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), dengue virus (DENV), West Nile virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro. Cross reactivity of PDE12 inhibitors with other PDEs and in vivo toxicity were measured. In EMCV assays, CO-17 potentiated the effect of IFNα by 3 log10. The compounds were selective for PDE12 when tested against a panel of other PDEs and non-toxic at up to 42 mg kg-1 in rats in vivo. Thus, we have identified PDE12 inhibitors (CO-17 and CO-63), and established the principle that inhibitors of PDE12 have antiviral properties. Early studies suggest these PDE12 inhibitors are well tolerated at the therapeutic range, and reduce viral load in studies of DENV, HCV, WNV and SARS-CoV-2 in human cells and WNV in a mouse model.

Original publication

DOI

10.1099/jgv.0.001865

Type

Journal article

Journal

J Gen Virol

Publication Date

07/2023

Volume

104

Keywords

2',5'-oligoadenylate synthetase (OAS), West Nile virus (WNV) , dengue virus (DENV), hepatitis C virus (HCV), ribonuclease L (RNAseL), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Humans, Mice, Animals, Rats, Antiviral Agents, SARS-CoV-2, COVID-19, RNA Viruses, Interferon-alpha, Encephalomyocarditis virus, Phosphoric Diester Hydrolases