Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Histopathological studies have revealed key processes of atherosclerotic plaque thrombosis. However, the diversity and complexity of lesion types highlight the need for improved sub-phenotyping. Here we analyze the gene expression profiles of 654 advanced human carotid plaques. The unsupervised, transcriptome-driven clustering revealed five dominant plaque types. These plaque phenotypes were associated with clinical presentation and showed differences in cellular compositions. Validation in coronary segments showed that the molecular signature of these plaques was linked to coronary ischemia. One of the plaque types with the most severe clinical symptoms pointed to both inflammatory and fibrotic cell lineages. Further, we did a preliminary analysis of potential circulating biomarkers that mark the different plaques phenotypes. In conclusion, the definition of the plaque at risk for a thrombotic event can be fine-tuned by in-depth transcriptomic-based phenotyping. These differential plaque phenotypes prove clinically relevant for both carotid and coronary artery plaques and point to distinct underlying biology of symptomatic lesions.

Original publication




Journal article


Nature cardiovascular research


Springer Nature

Publication Date





1140 - 1155


32 Biomedical and Clinical Sciences, 4 Detection, screening and diagnosis, 4.2 Evaluation of markers and technologies, 40 Engineering, 4012 Fluid Mechanics and Thermal Engineering, Aging, Atherosclerosis, Cardiovascular, Genetics, Heart Disease, Heart Disease - Coronary Heart Disease, Hematology, Human Genome