Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The impact of exposure to endemic infections on basal immunity and susceptibility to HIV-1 acquisition remains uncertain. We hypothesized that exposure to infections such as cytomegalovirus (CMV), malaria and sexually transmitted infections (STIs) in high-risk individuals may modulate immunity and subsequently increase susceptibility to HIV-1 acquisition. METHODS: A case-control study nested in an HIV-1 negative high-risk cohort from Coastal Kenya was used. Cases were defined as volunteers who tested HIV-1 positive during follow-up and had a plasma sample collected 3 ± 2 months prior to the estimated date of HIV-1 infection. Controls were individuals who remained HIV-1 negative during the follow-up and were matched 2:1 to cases by sex, age, risk group and follow-up time. STI screening was performed using microscopic and serologic tests. HIV-1 pre-infection plasma samples were used to determined exposure to CMV and malaria using enzyme-linked immunosorbent assays and to quantify forty-one cytokines and soluble factors using multiplexing assays. Multiplexing data were analyzed using principal component analysis. Associations between cytokines and soluble factors with subsequent HIV-1 acquisition were determined using conditional logistic regression models. RESULTS AND DISCUSSION: Overall, samples from 47 cases and 94 controls were analyzed. While exposure to malaria (p=0.675) and CMV (p=0.470) were not associated with HIV-1 acquisition, exposure to STIs was (48% [95% CI, 33.3 - 63] vs. 26% [95% CI, 17.3 - 35.9]. Ten analytes were significantly altered in cases compared to controls and were clustered into four principal components: PC1 (VEGF, MIP-1β, VEGF-C and IL-4), PC2 (MCP-1, IL-2 and IL-12p70), PC3 (VEGF-D) and PC4 (Eotaxin-3). PC1, which is suggestive of a Th2-modulatory pathway, was significantly associated with HIV-1 acquisition after controlling for STIs (adjusted odds ratio, (95% CI), p-value: 1.51 [1.14 - 2.00], p=0.004). Elevation of Th2-associated pathways may dampen responses involved in viral immunity, leading to enhanced susceptibility to HIV-1 acquisition. Immunomodulatory interventions aimed at inhibiting activation of Th2-associated pathways may be an additional strategy to STI control for HIV-1 prevention and may reduce dampening of immune responses to vaccination.

Original publication

DOI

10.3389/fimmu.2023.1283559

Type

Journal article

Journal

Front Immunol

Publication Date

2023

Volume

14

Keywords

HIV acquisition, chemokines, cytokines, exposure, infections, Humans, HIV-1, Kenya, Case-Control Studies, Sexually Transmitted Diseases, HIV Infections, HIV Seropositivity, Cytomegalovirus, Acquired Immunodeficiency Syndrome, Interleukin-12, Cytomegalovirus Infections, Malaria