Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mosaic penA alleles formed through horizontal gene transfer (HGT) have been instrumental to the rising incidence of ceftriaxone-resistant gonococcal infections. Although interspecies HGT of regions of the penA gene between Neisseria gonorrhoeae and commensal Neisseria species has been described, knowledge concerning which species are the most common contributors to mosaic penA alleles is limited, with most studies examining only a small number of alleles. Here, we investigated the origins of recombinant penA alleles through in silico analyses that incorporated 1700 penA alleles from 35 513 Neisseria isolates, comprising 15 different Neisseria species. We identified Neisseria subflava and Neisseria cinerea as the most common source of recombinant sequences in N. gonorrhoeae penA. This contrasted with Neisseria meningitidis penA, for which the primary source of recombinant DNA was other meningococci, followed by Neisseria lactamica. Additionally, we described the distribution of polymorphisms implicated in antimicrobial resistance in penA, and found that these are present across the genus. These results provide insight into resistance-related changes in the penA gene across human-associated Neisseria species, illustrating the importance of genomic surveillance of not only the pathogenic Neisseria, but also of the oral niche-associated commensals from which these pathogens are sourcing key genetic variation.

Original publication




Journal article


Microbial Genomics


Microbiology Society

Publication Date