Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The great majority of mammalian genes yield multiple transcripts arising from differential mRNA processing, but in very few instances have alternative forms been assigned distinct functional properties. We have cloned and characterized a new isoform of the accessory molecule CD6 that lacks the CD166 binding domain and is expressed in rat and human primary cells. The novel isoform, CD6Δd3, results from exon 5 skipping and consequently lacks the third scavenger receptor cysteine-rich (SRCR) domain of CD6. Differential expression of the SRCR domain 3 resulted in a remarkable functional difference: whereas full-length CD6 targeted to the immunological synapse, CD6Δd3 was unable to localize at the T cell:APC interface during Ag presentation. Analysis of expression of CD6 variants showed that, while being more frequent in coexpression with full-length CD6, the CD6Δd3 isoform constituted the sole species in a small percentage of T cells. In the rat thymus, CB6Δd3 is less represented in double-positive thymocytes but is detectable in nearly 50% of single-positive CD4 or CD8 thymocytes, suggesting that CD6 switching between full-length and Δd3 isoforms may be involved in thymic selection. Strikingly, CD6Δd3 is markedly up-regulated upon activation of T lymphocytes, partially substituting full-length CD6, as evaluated by RT-PCR analysis at the single-cell level, by immunoblotting, and by flow cytometry using Abs recognizing SRCR domains 1 and 3 of human CD6. This elegant mechanism controlling the expression of the CD166 binding domain may help regulate signaling delivered by CD6, through different types of extracellular engagement. Copyright © 2007 by The American Association of Immunologists, Inc.

Original publication

DOI

10.4049/jimmunol.178.7.4351

Type

Journal article

Journal

Journal of Immunology

Publication Date

01/04/2007

Volume

178

Pages

4351 - 4361