Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The risk of postnatal HIV transmission is associated with the magnitude of the milk virus load. While HIV-specific cellular immune responses control systemic virus load and are detectable in milk, the contribution of these responses to the control of virus load in milk is unknown. METHODS: We assessed the magnitude of the immunodominant GagRY11 and subdominant EnvKY9-specific CD8+ T lymphocyte response in blood and milk of 10 A*3002+, HIV-infected Malawian women throughout the period of lactation and correlated this response to milk virus RNA load and markers of breast inflammation. RESULTS: The magnitude and kinetics of the HIV-specific CD8+ T lymphocyte responses were discordant in blood and milk of the right and left breast, indicating independent regulation of these responses in each breast. However, there was no correlation between the magnitude of the HIV-specific CD8+ T lymphocyte response and the milk virus RNA load. Further, there was no correlation between the magnitude of this response and markers of breast inflammation. CONCLUSIONS: The magnitude of the HIV-specific CD8+ T lymphocyte response in milk does not appear to be solely determined by the milk virus RNA load and is likely only one of the factors contributing to maintenance of low virus load in milk.

Original publication

DOI

10.1371/journal.pone.0023735

Type

Journal article

Journal

PLoS One

Publication Date

2011

Volume

6

Keywords

Breast, CD8-Positive T-Lymphocytes, Female, HIV, Humans, Kinetics, Lactation, Malawi, Milk, Human, Mucous Membrane, RNA, Viral, T-Cell Antigen Receptor Specificity, Viral Load