Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MicroRNAs are small non-coding RNA molecules that regulate mRNA translation and stability by binding to complementary sequences usually within the 3' un-translated region (UTR). We have previously shown that the hepatic toxicity caused by wild-type Adenovirus 5 (Ad5WT) in mice can be prevented by incorporating 4 binding sites for the liver-specific microRNA, mir122, into the 3' UTR of E1A mRNA. This virus, termed Ad5mir122, is a promising virotherapy candidate and causes no obvious liver pathology. Herein we show that Ad5mir122 maintains wild-type lytic activity in cancer cells not expressing mir122 and assess any effects of possible mir122 depletion in host cells. Repeat administration of 2×10(10) viral particles of Admir122 to HepG2 tumour bearing mice showed significant anti-cancer efficacy. RT-QPCR showed that E1A mRNA was down-regulated 29-fold in liver when compared to Ad5WT. Western blot for E1A confirmed that all protein variants were knocked down. RT-QPCR for mature mir122 in infected livers showed that quantity of mir122 remained unaffected. Genome wide mRNA microarray profiling of infected livers showed that although the transcript level of >3900 different mRNAs changed more than 2-fold following Ad5WT infection, less than 600 were changed by Ad5mir122. These were then filtered to select mRNAs that were only altered by Ad5mir122 and the remaining 21 mRNAs were compared to predicted mir122 targets. No mir122 target mRNAs were affected by Ad5 mir122. These results demonstrate that the exploitation of microRNA regulation to control virus replication does not necessarily affect the level of the microRNA or the endogenous mRNA targets.

Original publication

DOI

10.1371/journal.pone.0016152

Type

Journal article

Journal

PLoS One

Publication Date

10/01/2011

Volume

6

Keywords

Adenoviridae, Animals, Hep G2 Cells, Humans, Liver, Mice, MicroRNAs, Neoplasms, Experimental, Transplantation, Heterologous, Treatment Outcome, Virion