Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vaccination with Bacille Calmette-Guérin (BCG) has traditionally been used for protection against disease caused by the bacterium Mycobacterium tuberculosis (M.tb). The efficacy of BCG, especially against pulmonary tuberculosis (TB) is variable. The best protection is conferred in temperate climates and there is close to zero protection in many tropical areas with a high prevalence of both tuberculous and non-tuberculous mycobacterial species. Although interferon (IFN)-γ is known to be important in protection against TB disease, data is emerging on a possible role for interleukin (IL)-17 as a key cytokine in both murine and bovine TB vaccine studies, as well as in humans. Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) is a novel TB vaccine designed to enhance responses induced by BCG. Antigen-specific IFN-γ production has already been shown to peak one week post-MVA85A vaccination, and an inverse relationship between IL-17-producing cells and regulatory T cells expressing the ectonucleosidease CD39, which metabolises pro-inflammatory extracellular ATP has previously been described. This paper explores this relationship and finds that consumption of extracellular ATP by peripheral blood mononuclear cells from MVA85A-vaccinated subjects drops two weeks post-vaccination, corresponding to a drop in the percentage of a regulatory T cell subset expressing the ectonucleosidase CD39. Also at this time point, we report a peak in co-production of IL-17 and IFN-γ by CD4(+) T cells. These results suggest a relationship between extracellular ATP and effector responses and unveil a possible pathway that could be targeted during vaccine design.

Original publication

DOI

10.1371/journal.pone.0023463

Type

Journal article

Journal

PLoS One

Publication Date

2011

Volume

6

Keywords

Adenosine Triphosphate, Adolescent, Adult, Animals, Antigens, CD, Apyrase, Cattle, Cell Count, Enzyme Inhibitors, Humans, Interferon-gamma, Interleukin-17, Leukocytes, Mononuclear, Mice, Middle Aged, Mycobacterium tuberculosis, T-Lymphocytes, Regulatory, Th1 Cells, Th17 Cells, Tuberculosis Vaccines, Vaccination, Viral Vaccines, Young Adult