Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The major known genetic risk factors in multiple sclerosis reside in the major histocompatibility complex (MHC) region. Although there is strong evidence implicating MHC class II alleles and CD4(+) T cells in multiple sclerosis pathogenesis, possible contributions from MHC class I genes and CD8(+) T cells are controversial. We have generated humanized mice expressing the multiple sclerosis-associated MHC class I alleles HLA-A(*)0301 (encoding human leukocyte antigen-A3 (HLA-A3)) and HLA-A(*)0201 (encoding HLA-A2) and a myelin-specific autoreactive T cell receptor (TCR) derived from a CD8(+) T cell clone from an individual with multiple sclerosis to study mechanisms of disease susceptibility. We demonstrate roles for HLA-A3-restricted CD8(+) T cells in induction of multiple sclerosis-like disease and for CD4(+) T cells in its progression, and we also define a possible mechanism for HLA-A(*)0201-mediated protection. To our knowledge, these data provide the first direct evidence incriminating MHC class I genes and CD8(+) T cells in the pathogenesis of human multiple sclerosis and reveal a network of MHC interactions that shape the risk of multiple sclerosis.

Original publication




Journal article


Nat Med

Publication Date





1227 - 1235


Animals, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Central Nervous System, Gene Expression Regulation, Histocompatibility Antigens Class I, Humans, Mice, Mice, Transgenic, Multiple Sclerosis, Receptors, Antigen, T-Cell, Thymus Gland