Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.

Original publication

DOI

10.1042/BCJ20210301

Type

Journal article

Journal

Biochem J

Publication Date

21/02/2024

Volume

481

Pages

245 - 263

Keywords

bacteria, biofilms, extracellular matrix, microbiology, structural biology, Bacteria, Biofilms, Extracellular Matrix, Polymers