Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge "W-H-W" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.

Original publication

DOI

10.1016/j.crmeth.2024.100757

Type

Journal article

Journal

Cell Rep Methods

Publication Date

15/04/2024

Keywords

CP: Genetics, CP: Systems biology, Cross-disease pleiotropic association data, computational medicine, inflammatory disorders, neuropsychiatric disorders, pleiotropy informing prioritization and evaluation, therapeutic targets