Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Following the apparent final case in an Ebola virus disease (EVD) outbreak, the decision to declare the outbreak over must balance societal benefits of relaxing interventions against the risk of resurgence. Estimates of the end-of-outbreak probability (the probability that no future cases will occur) provide quantitative evidence that can inform the timing of an end-of-outbreak declaration. An existing modelling approach for estimating the end-of-outbreak probability requires comprehensive contact tracing data describing who infected whom to be available, but such data are often unavailable or incomplete during outbreaks. Here, we develop a Markov chain Monte Carlo-based approach that extends the previous method and does not require contact tracing data. Considering data from two EVD outbreaks in the Democratic Republic of the Congo, we find that data describing who infected whom are not required to resolve uncertainty about when to declare an outbreak over.

Type

Journal article

Journal

Science Advances

Publisher

American Association for the Advancement of Science

Publication Date

24/05/2024

Keywords

Ebola, end-of-outbreak declaration, end-of-outbreak probability, EVD, infectious disease modelling, mathematical epidemiology, mathematical modelling