Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wild European Starlings (Sturnus vulgaris) shed Campylobacter at high rates, suggesting that they may be a source of human and farm animal infection. A survey of Campylobacter shedding of 957 wild starlings was undertaken by culture of faecal specimens and genetic analysis of the campylobacters isolated: shedding rates were 30.6% for Campylobacter jejuni, 0.6% for C. coli and 6.3% for C. lari. Genotyping by multilocus sequence typing (MLST) and antigen sequence typing established that these bacteria were distinct from poultry or human disease isolates with the ST-177 and ST-682 clonal complexes possibly representing starling-adapted genotypes. There was seasonal variation in both shedding rate and genotypic diversity, both exhibiting a maximum during the late spring/early summer. Host age also affected Campylobacter shedding, which was higher in younger birds, and turnover was rapid with no evidence of cross-immunity among Campylobacter species or genotypes. In nestlings, C. jejuni shedding was evident from 9 days of age but siblings were not readily co-infected. The dynamics of Campylobacter infection of starlings differed from that observed in commercial poultry and consequently there was no evidence that wild starlings represent a major source of Campylobacter infections of food animals or humans.

Original publication

DOI

10.1111/j.1462-2920.2008.01773.x

Type

Journal article

Journal

Environ Microbiol

Publication Date

01/2009

Volume

11

Pages

258 - 267

Keywords

Animals, Bacterial Typing Techniques, Campylobacter, Cluster Analysis, DNA Fingerprinting, DNA, Bacterial, Feces, Genetic Variation, Genotype, Prevalence, Seasons, Sequence Analysis, DNA, Starlings