Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In homeostasis, counterbalanced morphogen signalling gradients along the vertical axis of the intestinal mucosa regulate the fate and function of epithelial and stromal cell compartments. Here, we used a disease-positioned mouse, and human tissue, to explore the consequences of pathological BMP signalling dysregulation on epithelial-mesenchymal interaction. Aberrant pan-epithelial expression of the secreted BMP antagonist Grem1, resulted in ectopic crypt formation with lineage tracing demonstrating the presence of Lgr5(-) stem/progenitor cells. Isolated epithelial cell Grem1 expression had no effect on individual cell fate indicating an intercompartmental impact of mucosal-wide BMP antagonism. Treatment with a novel anti-Grem1 antibody abrogated the polyposis phenotype, and triangulation of specific pathway inhibitors defined a pathological sequence of events, with wnt-ligand dependent ectopic stem cell niches formed through stromal remodelling following BMP disruption. These data support an emerging co-evolutionary model of intestinal cell compartmentalisation based on bidirectional regulation of epithelial-mesenchymal cell fate and function.

Type

Journal

Nature Communications

Publisher

Nature Research (part of Springer Nature)

Publication Date

07/04/2025

Keywords

Stem cells, stem cell niche, ectopic crypts, BMP signalling, Grem1, WNT signalling