Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Generative models have emerged as potentially powerful methods for molecular design, yet challenges persist in generating molecules that effectively bind to the intended target. The ability to control the design process and incorporate prior knowledge would be highly beneficial for better tailoring molecules to fit specific binding sites. In this paper, we introduce MolSnapper, a novel tool that is able to condition diffusion models for structure-based drug design by seamlessly integrating expert knowledge in the form of 3D pharmacophores. We demonstrate through comprehensive testing on both the CrossDocked and Binding MOAD data sets that our method generates molecules better tailored to fit a given binding site, achieving high structural and chemical similarity to the original molecules. Additionally, MolSnapper yields approximately twice as many valid molecules as alternative methods.

Original publication

DOI

10.1021/acs.jcim.4c02008

Type

Journal article

Journal

J Chem Inf Model

Publication Date

18/04/2025