Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The metabolic “handshake” between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the “volatilome” (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.

Original publication

DOI

10.1016/j.crmeth.2023.100539

Type

Journal article

Journal

Cell Reports Methods

Publication Date

28/08/2023

Volume

3