Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Reversibly switchable fluorescent proteins (RSFPs) are GFP-like proteins that may be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, and vice versa. They can be utilized as genetically encodable probes and bear large potential for a wide array of applications, in particular for new protein tracking schemes and subdiffraction resolution microscopy. However, the currently described monomeric RSFPs emit only blue-green or green fluorescence; the spectral window for their use is thus rather limited. Using a semirational engineering approach based on the crystal structure of the monomeric nonswitchable red fluorescent protein mCherry, we generated rsCherry and rsCherryRev. These two novel red fluorescent RSFPs exhibit fluorescence emission maxima at approximately 610 nm. They display antagonistic switching modes, i.e., in rsCherry irradiation with yellow light induces the off-to-on transition and blue light the on-to-off transition, whereas in rsCherryRev the effects of the switching wavelengths are reversed. We demonstrate time-lapse live-cell subdiffraction microscopy by imaging rsCherryRev targeted to the endoplasmic reticulum utilizing the switching and localization of single molecules.

Original publication




Journal article


Biophys J

Publication Date





2989 - 2997


Animals, Biomarkers, Cattle, Color, Escherichia coli, Light, Luminescent Proteins, Microscopy, Nanotechnology, Protein Engineering, Spectrometry, Fluorescence, Time Factors