Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Charged nitrogen-vacancy (NV) color centers in diamond are excellent luminescence sources for far-field fluorescence nanoscopy by stimulated emission depletion (STED). Here we show that these photostable color centers can be visualized by STED using simple continuous-wave or high repetition pulsed lasers (76 MHz) at wavelengths >700 nm for STED. Furthermore, we show that NV centers can be imaged in three dimensions (3D) inside the diamond crystal and present single-photon signatures of single color centers recorded in high density samples, demonstrating a new recording scheme for STED and related far-field nanoscopy approaches. Finally, we exemplify the potential of using nanodiamonds containing NV centers as luminescence tags in STED microscopy. Our results offer new experimental avenues in nanooptics, nanotechnology, and the life sciences.

Original publication




Journal article


Nano Lett

Publication Date





3323 - 3329


Light, Luminescence, Materials Testing, Microscopy, Fluorescence, Nanoparticles, Nanotechnology, Nitrogen, Particle Size, Surface Properties