Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We extended the sensitivity of Raman correlation spectroscopy in solution to the single-molecule level by applying surface- and resonance-enhanced Raman scattering (SERRS) combined with time-gated, confocal signal detection. The brightness of the SERRS signal of single Rhodamine 6G molecules adsorbed on a single silver nanoparticle is comparable to fluorescence. Rare event analysis reveals the existence of few particles with simultaneous SERRS and fluorescence signal. The observation of a dynamic exchange between heterogeneous binding sites is supported by the existence of multiple SERRS brightnesses in the signal intensity distribution and by signal fluctuations in the 60 μs time range detected by autocorrelation analysis. Finally, polarization-dependent SERRS autocorrelation curves and single-particle analysis allowed us to measure individual rotational diffusion times and to directly analyze the heterogeneity of the ensemble in solution. © 2001 American Chemical Society.


Journal article


Journal of Physical Chemistry A

Publication Date





3678 - 3679