Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Using a confocal microscope with a single-photon avalanche photodiode as detector, we studied photon bursts of single Rhodamine 6G (R6G) and Rhodamin B-zwitterion (RB) molecules in aqueous solution by excitation of the lowest excited singlet state S1 with a frequency-doubled titanium:sapphire laser. Multichannel scaler traces, the fluorescence autocorrelation function and fluorescence decay times determined by time-correlated single-photon counting have been measured simultaneously. The time-resolved fluorescence signals were analyzed with a maximum likelihood estimator. Fluorescence lifetime patterns in steps of 100 ps were generated by convolution with the excitation pulse. The lifetime of the S1 state was derived from the Kullback-Leibler minimum discrimination information. We are able to demonstrate for the first time identification of two different single dye molecules via their characteristic fluorescence lifetimes of 1.79 ± 0.33 ns (RB) and 3.79 ± 0.38 ns (R6G) in aqueous solution.

Original publication

DOI

10.1007/BF01828950

Type

Journal article

Journal

Applied Physics B: Lasers and Optics

Publication Date

01/01/1996

Volume

63

Pages

517 - 523