Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biological microscopy favors photostable fluorescent markers with large fluorescence quantum yields, low dark triplet state population, good biocompatibility and absorption and emission maxima in the near-infrared, where cellular autofluorescence is minimized. In the present study, carbopyronines absorbing around 640 nm and emitting at around 660 nm, with a low intersystem crossing rate (kisc ≈ 0.5×106 s-1) and excellent properties for cellular imaging were synthesized. A general synthetic route to carbopyronines with functional groups variable in the final steps of the synthesis or in the resulting fluorescent dye is presented. Possessing two 2-me-thoxyethyl groups, the parent dye is soluble in water and most organic solvents. Demethylation of the dye or its precursors is straightforward, clean, and furnishes compounds with one or two 2-hydroxyethyl groups, which can be used for further transformations. Modifications in the linker-containing carboxy group are also possible. A multistep synthesis of the dye starting from a simple precursor and utilizing a single temporary protective group is described. The presented approach may be further applied to the design of caged carbopyronines. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Original publication




Journal article


European Journal of Organic Chemistry

Publication Date



3593 - 3610