Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Because they have spin states that can be optically polarized and detected, fluorescent nitrogen vacancies in diamond have considerable potential for applications in quantum cryptography and computation, as well as for nanoscale magnetic imaging and biolabelling. However, their optical detection and control are hampered by the diffraction resolution barrier of far-field optics. Here, we show that stimulated emission depletion (STED) microscopy is capable of imaging nitrogen-vacancy centres with nanoscale resolution and ngström precision using focused light. The far-field optical control of the population of their excited state at the nanoscale expands the versatility of these centres and demonstrates the suitability of STED microscopy to image dense colour centres in crystals. Nitrogen-vacancy defects show great potential as tags for far-field optical nanoscopy because they exhibit nearly ideal STED without bleaching. Measured point-spread functions of 5.8nm in width demonstrate an all-physics-based far-field optical resolving power exceeding the wavelength of light by two orders of magnitude.

Original publication




Journal article


Nature Photonics

Publication Date





144 - 147