The role of transposable elements in the regulation of IFN-lambda1 gene expression.
Thomson SJP., Goh FG., Banks H., Krausgruber T., Kotenko SV., Foxwell BMJ., Udalova IA.
IFNs lambda1, lambda2, and lambda3, or type III IFNs, are recently identified cytokines distantly related to type I IFNs. Despite an early evolutionary divergence, the 2 types of IFNs display similar antiviral activities, and both are produced primarily in dendritic cells. Although virus induction of the type I IFN-beta gene had served as a paradigm of gene regulation, relatively little is known about the regulation of IFN-lambda gene expression. Studies of virus induction of IFN-lambda1 identified an essential role of IFN regulatory factors (IRF) 3 and 7, which bind to a regulatory DNA sequence near the start site of transcription. Here, we report that the proximal promoter region of the IFN-lambda1 regulatory region is not sufficient for maximal gene induction in response to bacterial LPS, and we identify an essential cluster of homotypic NF-kappaB binding sites. Remarkably, these sites, which bind efficiently to NF-kappaB and function independently of the IRF3/7 binding sites, originate as transposable elements of the Alu and LTR families. We also show that depletion of the NF-kappaB RelA protein significantly reduces the level of the IFN-lambda1 gene expression. We conclude that IFN-lambda1 gene expression requires NF-kappaB, and we propose a model for IFN-lambda1 gene regulation, in which IRF and NF-kappaB activate gene expression independently via spatially separated promoter elements. These observations provide insights into the independent evolution of the IFN-lambda1 and IFN-beta promoters and directly implicate transposable elements in the regulation of the IFN-lambda1 gene by NF-kappaB.