Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fluorescence Recovery After Photobleaching (FRAP) using the confocal laser scanning microscope has become a standard method used to determine the diffusion coefficient and mobile fraction of cell surface proteins. A common experimental approach is to bleach a stripe on the cell surface and fit the ensuing FRAP curve to a 1D diffusion model. This model is derived from the time course of recovery to an infinitely long stripe bleached on an infinite flat plane. This choice of model dictates the use of a long bleach stripe. We demonstrate that, in the case of a long bleach stripe, the finite extent of the cell leads to significant errors in parameter estimation. We further show that these errors are reduced when a relatively small stripe is bleached. Unfortunately, diffusion to such a region is fundamentally two dimensional and therefore applying the 1D model of diffusion leads to significant errors. We derive an equation suitable for fitting to FRAP data acquired from small bleach regions and analyze its accuracy using simulated data. We propose that the use of a small bleach region along with a two dimensional diffusion model is the ideal protocol for cell surface FRAP.

Original publication




Journal article


J Biochem Biophys Methods

Publication Date





1224 - 1231


Computer Simulation, Fluorescence Recovery After Photobleaching, Models, Biological, Surface Properties