Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The chemotactic response of a cell population to a single chemical species has been characterized experimentally for many cell types and has been extensively studied from a theoretical standpoint. However, cells frequently have multiple receptor types and can detect and respond chemotactically to more than one chemical. How these signals are integrated within the cell is not known. and we therefore adopt a macroscopic phenomenological approach to this problem. In this paper we derive and analyze chemotactic models based on partial differential (chemotaxis) equations for cell movement in response to multiple chemotactic cues. Our derivation generalizes the approach of Othmer and Stevens [29], who have recently developed a modeling framework for studying different chemotactic responses to a single chemical species. The importance of such a generalization is illustrated by the effect of multiple chemical cues on the chemotactic sensitivity and the spatial pattern of cell densities in several examples. We demonstrate that the model can generate the complex patterns observed on the skin of certain animal species and we indicate how the chemotactic response can be viewed as a form of positional indicator.

Type

Journal article

Journal

J Math Biol

Publication Date

10/2000

Volume

41

Pages

285 - 314

Keywords

Animals, Bacterial Physiological Phenomena, Cell Count, Chemotactic Factors, Chemotaxis, Mathematics, Models, Biological, Receptors, Cell Surface, Signal Transduction, Skin, Skin Pigmentation