Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Throughout its elongation, the new flagellum of the procyclic form of the African trypanosome Trypanosoma brucei is tethered at its tip to the lateral aspect of the old flagellum. This phenomenon provides a cytotactic mechanism for influencing inheritance of cellular pattern. Here, we show that this tethering is produced via a discrete, mobile transmembrane junction - the flagella connector. Light and electron microscopy reveal that the flagella connector links the extending microtubules at the tip of the new flagellum to the lateral aspect of three of the doublet microtubules in the old flagellar axoneme. Two sets of filaments connect the microtubules to three plates on the inner faces of the old and new flagellar membranes. Three differentiated areas of old and new flagellar membranes are then juxtaposed and connected by a central interstitial core of electron-dense material. The flagella connector is formed early in flagellum extension and is removed at the end of cytokinesis, but the exact timing of the latter event is slightly variable. The flagella connector represents a novel form of cellular junction that is both dynamic and mobile.

Original publication

DOI

10.1242/jcs.00995

Type

Journal article

Journal

J Cell Sci

Publication Date

01/04/2004

Volume

117

Pages

1641 - 1651

Keywords

Animals, Cell Cycle, Cytokinesis, Flagella, Membrane Proteins, Microscopy, Electron, Transmission, Protozoan Proteins, Species Specificity, Trypanosoma brucei brucei