Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Reaction-diffusion systems have been widely studied in developmental biology, chemistry and more recently in financial mathematics. Most of these systems comprise nonlinear reaction terms which makes it difficult to find closed form solutions. It therefore becomes convenient to look for numerical solutions: finite difference, finite element, finite volume and spectral methods are typical examples of the numerical methods used. Most of these methods are locally based schemes. We examine the implications of mesh structure on numerically computed solutions of a well-studied reaction-diffusion model system on two-dimensional fixed and growing domains. The incorporation of domain growth creates an additional parameter - the grid-point velocity - and this greatly influences the selection of certain symmetric solutions for the ADI finite difference scheme when a uniform square mesh structure is used. Domain growth coupled with grid-point velocity on a uniform square mesh stabilises certain patterns which are however very sensitive to any kind of perturbation in mesh structure. We compare our results to those obtained by use of finite elements on unstructured triangular elements. © 2006 Elsevier Inc. All rights reserved.

Original publication

DOI

10.1016/j.jcp.2006.11.022

Type

Journal article

Journal

Journal of Computational Physics

Publication Date

01/07/2007

Volume

225

Pages

100 - 119