Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During morphogenesis regular patterns often develop behind a frontier of pattern formation which travels across the prospective tissue. Here the authors consider the propagating patterns exhibited in a two-dimensional domain by a tissue interaction mechanochemical model for skin pattern formation. It is shown that the model can exhibit travelling waves of complex spatial pattern formation. Two alternative mechanisms that can produce such sequential patterning are presented. In particular, it is demonstrated that the specification of a simple quasi-one-dimensional pattern is all that is required to determine a complex two-dimensional pattern. Finally, the model solutions are related to actual pattern propagation during chick feather primordia initiation.


Journal article


IMA J Math Appl Med Biol

Publication Date





227 - 248


Animals, Chick Embryo, Epidermis, Mathematics, Models, Biological, Morphogenesis, Skin