Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Turing suggested that, under certain conditions, chemicals can react and diffuse in such a way as to produce steady-state inhomogeneous spatial patterns of chemical concentrations. We consider a simple two-variable reaction-diffusion system and find there is a spatio-temporally oscillating solution (STOS) in parameter regions where linear analysis predicts a pure Turing instability and no Hopf instability. We compute the boundary of the STOS and spatially non-uniform solution (SSNS) regions and investigate what features control its behavior.


Conference paper

Publication Date





234 - 238


reaction-diffusion, skin, WAVE, oscillatory Turing pattern, nonlinear, SPATIOTEMPORAL DYNAMICS