Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tumour tissue characteristically experiences fluctuations in substrate supply. This unstable microenvironment drives constitutive metabolic changes within cellular populations and, ultimately, leads to a more aggressive phenotype. Previously, variations in substrate levels were assumed to occur through oscillations in the haemodynamics of nearby and distant blood vessels. In this paper we examine an alternative hypothesis, that cycles of metabolite concentrations are also driven by cycles of cellular quiescence and proliferation. Using a mathematical modelling approach, we show that the interdependence between cell cycle and the microenvironment will induce typical cycles with the period of order hours in tumour acidity and oxygenation. As a corollary, this means that the standard assumption of metabolites entering diffusive equilibrium around the tumour is not valid; instead temporal dynamics must be considered.

Original publication

DOI

10.1007/s00285-007-0105-7

Type

Journal article

Journal

J Math Biol

Publication Date

11/2007

Volume

55

Pages

767 - 779

Keywords

Acidosis, Animals, Cell Cycle, Cell Proliferation, Humans, Hypoxia, Mathematics, Models, Biological, Neoplasms, Resting Phase, Cell Cycle