Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present necessary and sufficient conditions on the stability matrix of a general n(> or = 2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 < or = p < or = (n - 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable, matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem.


Journal article


J Math Biol

Publication Date





493 - 512


Diffusion, Kinetics, Models, Biological, Models, Chemical, Morphogenesis