Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Within-host mathematical models of Eimeria maxima and Eimeria praecox infections of the chicken are presented and used to investigate the role of host cell availability as a possible determinant of the so-called 'crowding effect'; whereby the fecundity of the parasites decreases as infectious dose increases. Assumptions about the number of available host cells, the average lifespan of these cells and the age structure within the host-cell population were made and mathematical models were constructed and combined with experimental data to test whether these conditions could reproduce the crowding effect in the two species. Experimental data demonstrated that crowding during in vivo infections was apparent following very low infectious doses, but none of the models could adequately reproduce crowding at the same doses while maintaining realistic estimates of the dynamics of the enterocyte pool. However, both the size and lifespan of the enterocyte pool were demonstrated to have substantial effects on the fecundity of the infections, particularly at higher doses. These data indicate that host cell availability cannot be solely responsible for the crowding effect. Alternative factors such as the influence of the primary immune response to the parasite may also be explored using within-host models and other applications of these models are discussed.

Original publication

DOI

10.1016/s0020-7519(01)00234-x

Type

Journal article

Journal

Int J Parasitol

Publication Date

08/2001

Volume

31

Pages

1070 - 1081

Keywords

Animals, Chickens, Coccidiosis, Eimeria, Feces, Fertility, Host-Parasite Interactions, Models, Biological, Parasite Egg Count, Poultry Diseases