Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recombination acts to shuffle the existing genetic variation within a population, leading to various approaches for detecting its action and estimating the rate at which it occurs. Here, we discuss the principal methodological and analytical approaches taken to understanding the distribution of recombination across the human genome. We first discuss the detection of recent crossover events in both well-characterised pedigrees and larger populations with extensive recent shared ancestry. We then describe approaches for learning about the fine-scale structure of recombination rate variation from patterns of genetic variation in unrelated individuals. Finally, we show how related approaches using individuals of admixed ancestry can provide an alternative approach to analysing recombination. Approaches differ not only in the statistical methods used, but also in the resolution of inference, the timescale over which recombination events are detected, and the extent to which inter-individual variation can be identified.

Original publication




Journal article


Methods Mol Biol

Publication Date





217 - 237


Genetic Variation, Humans, Linkage Disequilibrium, Pedigree, Recombination, Genetic