Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is much evidence that T cells may be activated via mechanisms that act independently of direct TCR ligation. Despite this, the question of whether such forms of bystander T cell activation occur during immune responses is hotly debated. To address some outstanding questions, we set up an in vitro system within which to analyze bystander T cell activation in human T cells, in the absence of the possibility for TCR cross-reactivity. In addition, we have investigated the genetic, phenotypic, and functional characteristics of bystander-activated T cells. In this study, we show that bystander T cell activation is, indeed, observed during a specific immune response, and that it occurs preferentially among CD4(+) memory T cells. Furthermore, bystander-activated T cells display a distinct gene expression profile. The mechanism for bystander T cell activation involves soluble factors, and the outcome is an elevated level of apoptosis. This may provide an explanation for the attrition of T cell memory pools of heterologous specificity during immune responses to pathogens such as viruses.

Original publication




Journal article


J Immunol

Publication Date





1962 - 1971


Apoptosis, Bystander Effect, CD4-Positive T-Lymphocytes, Flow Cytometry, Gene Expression Profiling, Humans, Immunologic Memory, Lymphocyte Activation, Oligonucleotide Array Sequence Analysis, Reverse Transcriptase Polymerase Chain Reaction