Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human immunodeficiency virus (HIV) vaccine candidates were previously constructed as a string of cytotoxic T lymphocyte (CTL) epitopes delivered and expressed using DNA and modified virus Ankara (MVA; an attenuated vaccinia virus) vectors. These vaccines were shown to induce interferon (IFN)-gamma-producing and cytolytic CD8+ T cells after a single vaccine administration. In the course of this work, immunization protocols were sought which would improve the levels of induced HIV-specific T cells. It was found that previous immunological exposure to MVA reduced the efficiency of subsequent priming and boosting using the same vaccine vehicle. However, a combined regime whereby the animals were first primed with the DNA vaccine and then boosted with MVA was the most potent protocol for the induction of both interferon-gamma-producing and cytolytic T cells against two CTL epitopes simultaneously. The general applicability of this novel vaccination method for induction of major histocompatibility complex class I-restricted T cells is discussed.


Journal article



Publication Date





439 - 445


Animals, CD8-Positive T-Lymphocytes, Cells, Cultured, DNA, Viral, Epitopes, Female, Histocompatibility Antigens Class I, Immunization, Secondary, Interferon Inducers, Interferon-gamma, Mice, Mice, Inbred BALB C, Peptides, T-Lymphocytes, Cytotoxic, Vaccines, Attenuated, Vaccinia virus, Viral Vaccines