Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Intravenous delivery of therapeutic virus particles remains a major goal for virotherapy of metastatic cancer. Avoiding phagocytic capture and unwanted infection of nontarget cells is essential for extended plasma particle kinetics, and simply ablating one or the other does not give extended plasma circulation. Here we show that polymer coating of adenovirus type 5 (Ad5) can combine with predosing strategies or Kupffer cell ablation to achieve systemic kinetics with a half-life >60 min, allowing ready access to peripheral tumors. Accumulation of virus particles within tumor nodules is proportional to the area under the plasma concentration/time curve. Polymer coating wild-type Ad5 in this way is known to decrease hepatic toxicity, increasing the dose of virus particles that can be safely administered. Using polymer-coating technology to deliver a replicating Ad5 systemically, virus replication and transgene expression was almost totally confined to tumor tissues, giving a much improved therapeutic index compared with uncoated virus, and complete control of human HepG2 tumor xenografts.

Original publication

DOI

10.2217/nnm.12.50

Type

Journal article

Journal

Nanomedicine (Lond)

Publication Date

11/2012

Volume

7

Pages

1683 - 1695

Keywords

Acrylamides, Adenoviridae, Animals, Female, HEK293 Cells, Hep G2 Cells, Humans, Liver, Liver Neoplasms, Mice, Mice, Inbred BALB C, Oncolytic Virotherapy