Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We develop a unique algorithm implemented in the program MOSAICS (Methodologies for Optimization and Sampling in Computational Studies) that is capable of nanoscale modeling without compromising the resolution of interest. This is achieved by modeling with customizable hierarchical degrees of freedom, thereby circumventing major limitations of conventional molecular modeling. With the emergence of RNA-based nanotechnology, large RNAs in all-atom representation are used here to benchmark our algorithm. Our method locates all favorable structural states of a model RNA of significant complexity while improving sampling accuracy and increasing speed many fold over existing all-atom RNA modeling methods. We also modeled the effects of sequence mutations on the structural building blocks of tRNA-based nanotechnology. With its flexibility in choosing arbitrary degrees of freedom as well as in allowing different all-atom energy functions, MOSAICS is an ideal tool to model and design biomolecules of the nanoscale.

Original publication

DOI

10.1073/pnas.1119918109

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

21/02/2012

Volume

109

Pages

2890 - 2895

Keywords

Algorithms, Base Sequence, Models, Molecular, Molecular Sequence Data, Mutation, Nanostructures, Nucleic Acid Conformation, Pliability, RNA