Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Under the Red Queen hypothesis, host-parasite coevolution selects against common host genotypes. Although this mechanism might underlie the persistence of sexual reproduction, it might also maintain high clonal diversity. Alternatively, clonal diversity might be maintained by multiple origins of parthenogens from conspecific sexuals, a feature in many animal groups. Herein, we addressed the maintenance of overall genetic diversity by coevolving parasites, as predicted by the Red Queen hypothesis. We specifically examined the contribution of parasites to host clonal diversity and the frequency of sexually reproducing individuals in natural stream populations of Potamopyrgus antipodarum snails. We also tested the alternative hypothesis that clonal diversity is maintained by the input of clones by mutation from sympatric sexuals. Clonal diversity and the frequency of sexual individuals were both positively related to infection frequency. Surprisingly, although clones are derived by mutation from sexual snails, parasites explained more of the genotypic variation among parthenogenetic subpopulations. Our findings thus highlight the importance of parasites as drivers of clonal diversity, as well as sex.

Original publication




Journal article



Publication Date





1474 - 1481


Adaptation, Physiological, Animals, Biological Evolution, Female, Genetic Variation, Genotype, Host-Parasite Interactions, Male, New Zealand, Parthenogenesis, Population Dynamics, Reproduction, Snails, Trematoda