Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tick-borne pathogen transmission is dependent upon tick number per host and the physical and temporal distribution of each feeding stage. Age-related acquired immunity to tick and pathogen may also be important but has received less attention. In this study we evaluate which of these parameters has the greatest impact on Great Island Virus (GIV) transmission between Ixodes uriae ticks and common guillemots (Uria aalge). The study system is well suited to investigate age-related effects because the guillemot population is naturally divided into 2 groups, older breeding and younger pre-breeding adult birds. The physical distribution and timing of adult and nymphal tick feeding was similar for both guillemot age groups. However, breeding birds were parasitized by significantly more ticks (mainly nymphs). Calculations based on tick number predict virus prevalence should be higher in ticks that have fed on breeding rather than pre-breeding birds. However, empirical evidence indicates the reverse. Protective acquired immunity to GIV infection may be the reason why GIV prevalence is actually significantly lower in ticks that have fed on breeders. Far more breeding (74%) than pre-breeding (12%) guillemots had antibodies that neutralized 1 or more GIV strains. Estimates of the force of infection support the view that pre-breeding birds experience higher rates of virus infection than breeding birds. The results indicate age-related acquired immunity is a key factor in GIV transmission and highlight the need to consider age-related effects and host immunity when undertaking quantitative studies of tick-borne pathogen transmission.

Original publication




Journal article



Publication Date





241 - 253


Age Factors, Animals, Antibodies, Viral, Arachnid Vectors, Bird Diseases, Body Weight, Charadriiformes, Female, Immunity, Active, Ixodes, Linear Models, Male, Orbivirus, Prevalence, Reoviridae Infections, Scotland, Seasons, Sex Factors, Tick Infestations, Tick-Borne Diseases, Time Factors