Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The skin site at which ticks attach to their hosts to feed is the critical interface between the tick and its host, and tick-borne pathogens. This site is highly modified by the pharmacologically active molecules secreted in tick saliva. For pathogens, it is an ecologically privileged niche that many exploit. Such exploitation is referred to as saliva-activated transmission (SAT) - the indirect promotion of tick-borne pathogen transmission via the actions of bioactive tick saliva molecules on the vertebrate host. Here we review evidence for SAT and consider what are the most likely candidates for SAT factors among the tick pharmacopoeia of anti-haemostatic, anti-inflammatory and immunomodulatory molecules identified to date. SAT factors appear to differ for different pathogens and tick vector species, and possibly even depend on the vertebrate host species. Most likely we are searching for a suite of molecules that act together to overcome the redundancy in host response mechanisms. Whatever they turn out to be, the quest to identify the tick molecules that mediate SAT is an exciting one, and offers new insights to controlling ticks and tick-borne diseases.


Journal article



Publication Date



129 Suppl


S177 - S189


Animals, Arachnid Vectors, Host-Parasite Interactions, Humans, Saliva, Tick Infestations, Tick-Borne Diseases, Ticks