Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A reversed-phase liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric method was developed for the profiling of lipids in human and mouse plasma. With the use of a fused-core C 8 column and a binary gradient, more than 160 lipids belonging to eight different classes were detected in a single LC-MS run. The method was fully validated and the analytical characteristics such as linearity ( R (2), 0.994-1.000), limit of detection (0.08-1.28 microg/mL plasma), repeatability (RSD, 2.7-7.9%) and intermediate precision (RSD, 2.7-15.6%) were satisfactory. The method was successfully applied to p53 mutant mice plasma for studying some phenotypic effects of p53 expression.

Original publication




Journal article


J Proteome Res

Publication Date





4982 - 4991


Animals, Chromatography, Liquid, Cyclotrons, Lipids, Mice, Mice, Mutant Strains, Reproducibility of Results, Spectroscopy, Fourier Transform Infrared, Tandem Mass Spectrometry, Tumor Suppressor Protein p53