Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The remarkable advances in biotechnology over the past two decades have resulted in the generation of a huge amount of experimental data. It is now recognized that, in many cases, to extract information from this data requires the development of computational models. Models can help gain insight on various mechanisms and can be used to process outcomes of complex biological interactions. To do the latter, models must become increasingly complex and, in many cases, they also become mathematically intractable. With the vast increase in computing power these models can now be numerically solved and can be made more and more sophisticated. A number of models can now successfully reproduce detailed observed biological phenomena and make important testable predictions. This naturally raises the question of what we mean by understanding a phenomenon by modelling it computationally. This paper briefly considers some selected examples of how simple mathematical models have provided deep insights into complicated chemical and biological phenomena and addresses the issue of what role, if any, mathematics has to play in computational biology.

Type

Conference paper

Publication Date

2002

Volume

247

Pages

53 - 65

Keywords

MODEL, SYSTEMS, AGGREGATION, DICTYOSTELIUM-DISCOIDEUM, PATTERN-FORMATION