Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hassall's corpuscles are concentric clusters of keratinized epithelial cells located within the thymic medulla of humans and guinea pigs but are scant in mouse and rat. They are considered to be the terminally differentiated stages of medullary thymic epithelial cells (mTECs) but the mechanisms of their origin are unclear. We have previously deleted the TGF-β type II receptor (TGFβRII) specifically in mouse TECs and reported that these mice have mitigated thymic involution and exhibit earlier reconstitution post-irradiation. In this study, we analyzed the differentiation of mTECs in the TGFβRII-knockout mice. Interestingly, the TGFβRII-knockout mice display enhanced development of Hassall's corpuscles. The expression of Aire, stromal-cell-derived factor 1 and thymic stromal lymphopoietin in the thymi of the TGFβRII-knockout mice was similar to that previously reported for the human thymus. In addition, the putative epithelial progenitor markers MTS20 and MTS24 labeled Hassall's corpuscles in normal mice, but the extent and intensity of this staining were greatly enhanced in Hassall's corpuscles of the TGFβRII-knockout mice. The phosphorylated forms of ERK and JNK were also found in Hassall's corpuscles of the TGFβRII-knockout mice. Taken together, we suggest that TGFβRII-mediated signaling in TECs inhibits their development into Hassall's corpuscles in mice.

Original publication




Journal article


Int Immunol

Publication Date





633 - 642


Hassall’s corpuscle, MTS24, TGF-β type II receptor, epithelial cells, thymus, Animals, Epithelial Cells, Fluorescent Antibody Technique, Mice, Mice, Knockout, Microscopy, Confocal, Protein-Serine-Threonine Kinases, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, Thymus Gland