Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Malaria is one of the few diseases in which morbidity is still measured in hundreds of millions of cases every year. Plasmodium vivax and Plasmodium falciparum are responsible for nearly all the malaria cases in the world and despite difficulties in obtaining an exact number, estimates indicate an astonishing 349-552 million clinical cases of malaria due to P. falciparum in 2007 and between 132-391 million clinical episodes due to P. vivax in 2009. It is becoming evident that eradication of malaria will be an arduous task and P. vivax will be one of the most difficult species to eliminate and perhaps become the last standing malaria parasite. Indeed, in countries that succeed in decreasing the disease burden, nearly all the remaining malaria cases are caused by P. vivax. Such resilience is mainly due to the sophisticated mechanism that the parasite has evolved to remain dormant for months or years forming hypnozoites, a small structure in the liver that will be a major hurdle in the efforts toward malaria eradication. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials.

Original publication

DOI

10.4161/hv.26157

Type

Journal article

Journal

Hum Vaccin Immunother

Publication Date

12/2013

Volume

9

Pages

2558 - 2565

Keywords

Plasmodium vivax, clinical trials, human trials, malaria, vaccine, Biomedical Research, Clinical Trials as Topic, Humans, Malaria Vaccines, Malaria, Vivax, Plasmodium vivax