Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells are significantly more sensitive to cisplatin-induced cell death than antiestrogen-sensitive MCF-7 cells and we show that cisplatin induces cell death by activating both the caspase and lysosomal death pathways. The antiestrogen-resistant cell lines express lower levels of antiapoptotic Bcl-2 protein compared with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.

Original publication




Journal article


Mol Cancer Ther

Publication Date





1869 - 1876


Antineoplastic Agents, Blotting, Western, Breast Neoplasms, Caspases, Cell Death, Cell Line, Tumor, Cisplatin, Estrogen Receptor Modulators, Humans, Peptide Hydrolases