Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The enzyme 3beta/17beta-hydroxysteroid dehydrogenase (3beta/17beta-HSD) is a steroid-inducible component of the Gram-negative bacterium Comamonas testosteroni. It catalyzes the reversible reduction/dehydrogenation of the oxo/beta-hydroxy groups at positions 3 and 17 of steroid compounds, including hormones and isobile acids. Crystallographic analysis at 1.2 A resolution reveals the enzyme to have nearly identical subunits that form a tetramer with 222 symmetry. This is one of the largest oligomeric structures refined at this resolution. The subunit consists of a monomer with a single-domain structure built around a seven-stranded beta-sheet flanked by six alpha-helices. The active site contains a Ser-Tyr-Lys triad, typical for short-chain dehydrogenases/reductases (SDR). Despite their highly diverse substrate specificities, SDR members show a close to identical folding pattern architectures and a common catalytic mechanism. In contrast to other SDR apostructures determined, the substrate binding loop is well-defined. Analysis of structure-activity relationships of catalytic cleft residues, docking analysis of substrates and inhibitors, and accessible surface analysis explains how 3beta/17beta-HSD accommodates steroid substrates of different conformations.


Journal article



Publication Date





14659 - 14668


17-Hydroxysteroid Dehydrogenases, Androgens, Apoenzymes, Bacterial Proteins, Bile Acids and Salts, Binding Sites, Comamonas testosteroni, Crystallography, X-Ray, Estrogens, Models, Molecular, Point Mutation, Protein Folding, Protein Structure, Tertiary, Stereoisomerism, Substrate Specificity